

Synthesis of thiomorpholines by an intramolecular Ugi reaction

Stefano Marcaccini,^a Roberto Pepino,^a Tomás Torroba,^b Daniel Miguel^c and María García-Valverde^{b,*}

^aDipartimento di Chimica Organica 'Ugo Schiff', Università di Firenze, 50019 Sesto Fiorentino, Firenze, Italy ^bDepartamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain ^cDepartamento de Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain

Received 25 August 2002; accepted 12 September 2002

Abstract—The Ugi four-component condensation between 5-oxo-3-thiacarboxylic acids, benzylamines and cyclohexyl isocyanide gave 5-oxothiomorpholine-3-carboxamides. The configuration of bicyclic thiomorpholine derivatives was established by NOESY experiments. © 2002 Elsevier Science Ltd. All rights reserved.

The thiomorpholin-3-one is a well-known heterocycle that has been the subject of an intense research after its first preparation in 1950¹ because of its unique pharmacological properties. This nucleus is present in the 1.4-benzothiazine calcium antagonist Semotiadil² as well as in a pyrimido[1,4]thiazine derivative³ designed as an inhibitor of the glycinamide ribonucleotide transformylase with a potent cell growth inhibition. Modern approaches to this nucleus were performed by base-promoted aminoethylation of ethyl thioglycolate with 2oxazolidinones⁴ and from glycidic esters,⁵ among others.⁶ 5-Oxothiomorpholine-3-carboxylic acid derivatives were prepared for the first time in 1944.7 They have been the target of many synthetic methods⁸ after their pioneering incorporation into peptidic thyrotropin-releasing hormone analogues that were used for proving structure-activity relationships.9 A solid phase synthesis of 5-oxothiomorpholine-3-carboxamides has been reported,¹⁰ but several steps and expensive reagents are required. The usefulness of these kinds of compounds as pharmaceutical tools calls for rapid and atom-economical¹¹ methods that give access to molecular diversity in parallel to modern protein structurebased design of new medicinal leads. Multicomponent reactions are best suited to achieve this goal.¹² In continuation of our studies on the synthesis of heterocyclic compounds from isocyanides,¹³ we wish to report a synthesis of thiomorpholines based on an intramolecular Ugi four-component condensation between 5-oxo-3-thiacarboxylic acids 1a-b, benzylamines 2a-d, and cyclohexylisocyanide 3 (Scheme 1).

The Ugi four-component condensation between bifunctional oxoacids **1a–b**, obtained following known methods,¹⁴ commercial benzylamines **2a–d**, and the commercial cyclohexyl isocyanide **3** took place smoothly in boiling methanol to give monocyclic and bicyclic 5-oxothiomorpholine-3-carboxamides **4a–d** and **5a–d**, respectively, in good yields (76–85%) (Table 1). In a typical experiment, a solution of cyclohexyl isocyanide **3** (4 mmol) in methanol (4 mL) was added to a solution of **1a–b** (4 mmol) and **2a–d** (4 mmol) in methanol (4 mL). The resulting mixture was refluxed for 3 h and then evaporated to dryness under reduced pressure. The residue was dissolved in ethyl acetate (30 ml) and washed with 0.5% NaOH in water. The organic

R ² S		R ³ -NH ₂ (2 c-C ₆ H ₁₁ NC () (3)	R ²	s
$R^1 \longrightarrow 0$ 1 R^1	ĊO ₂ H R ²	MeOH 3h reflux	- c-C ₆ ⊦	I ₁₁ NHOC	N O R ³
a Me	н	4	R' R⁴	R	
b -(C⊢	l2)∕-	а	Me H	C ₆ H ₅ CH ₂	
``	2/7	b	Me H	4-CIC ₆ H ₄ C	CH_2
		с	Me H	3,4-CH ₂ O ₂	$_2C_6H_3CH_2$
		d	Me H	(S)-C ₆ H ₅ C	H(CH ₃)
2 R ³		5	$R^1 R^2$	R ³	
a C ₆ H ₅ C	CH_2	а	-(CH ₂) ₄ -	C ₆ H ₅ CH ₂	
b 4-CIC	₆ H ₄ CH ₂	b	-(CH ₂) ₄ -	4-CIC ₆ H ₄	CH ₂
c 3,4-C	$H_2O_2C_6H_3$	₃ CH ₂ c	-(CH ₂) ₄ -	3,4-CH ₂ C	$D_2C_6H_3CH_2$
d (S)-C ₆	₃H₅CH(CH	H₃) d	-(CH ₂) ₄ -	(S)-C ₆ H ₅	CH(CH ₃)

Scheme 1. 5-Oxothiomorpholine-3-carboxamides by the Ugi reaction.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02064-6

Keywords: Ugi reaction; thiomorpholine; isocyanide.

^{*} Corresponding author. Tel.: +34-947-258086; fax: +34-947-258087; e-mail: magaval@ubu.es

Table 1. One-pot synthesis of 5-oxothiomorpholine-3-car-
boxamides by the Ugi reaction

Entry	Keto-acid	R ³	Reaction product (%)	d.e. ^a
1	1a	C ₆ H ₅ CH ₂	4a (85)	
2	1a	4-ClC ₆ H ₄ CH ₂	4b (79)	
3	1a	3,4-CH ₂ O ₂ C ₆ H ₃ CH ₂	4c (76)	
4	1a	$(S)-C_6H_5CH(CH_3)$	4d (80)	0
5	1b	C ₆ H ₅ CH ₂	5a (85)	36
6	1b	4-ClC ₆ H ₄ CH ₂	5b (81)	16
7	1b	3,4-CH ₂ O ₂ C ₆ H ₃ CH ₂	5c (81)	30
8	1b	(S)-C ₆ H ₅ CH(CH ₃)	5d (79)	68 ^b

^a Diastereomeric excesses were determined by integration of the ¹H NMR signals of the reaction mixtures.

^b Relative relation *cis:trans* of C-4a and C-8a.

layer was separated, washed with water and dried (Na_2SO_4) . Removal of the solvent left a residue, which was recrystallized from 'PrOH/'Pr₂O to give the products.

The structure of compounds 4a-d and 5a-d was confirmed by their analytical and spectral data. In these syntheses a new stereocenter is created, so it is interesting to note the stereochemical outcome of the reaction. The configuration of bicyclic compounds 5a-c was established by NOESY experiments on the major diastereomer. These showed that the proton at C-4a was *trans* to the proton NH of the amide at C-8a.

To improve the diastereoselectivity of the method we performed the Ugi four-component reaction with the chiral amine 2d. By starting from 1a and 2d (entry 4) the reaction gave a 1:1 mixture of both diastereomers, but the reaction of 1b and 2d (entry 8) gave a mixture

Figure 1. The molecular structure of 5d.

of the four possible diastereomers in the proportion 42:42:8:8, therefore the obtained diastereomeric ratio was 84:16 (*trans:cis*). This experiment showed the possibilities of the reported method for the selective synthesis of enhanced mixtures of chiral compounds by employing enantiopure starting materials. One of the major diastereomers of **5d** was isolated as an optically pure material by recrystallization, from which the growth of a single crystal was possible. From the X-ray diffraction study of **5d** (Fig. 1) we assigned the absolute configuration at the C-4a as R and 8a as S.

In conclusion, we have shown that the Ugi four component reaction permitted a simple and fast one-pot procedure for the preparation of monocyclic and bicyclic 3-oxo-thiomorpholin-5-carboxamides from commercial or easily prepared reagents, and with good stereoselection when chiral starting amines were used. A simple hydrolysis of the cyclohexyl amide bond should give the free carboxylic acids, that are considered as useful pharmaceutical tools.¹⁵

Acknowledgements

We gratefully acknowledge financial support from the Dirección General de Investigación of Spain (Project ref. BQU2001-0258).

References

- 1. Bestian, M. Liebigs Ann. Chem. 1950, 566, 210.
- (a) Watanabe, Y.; Osanai, K.; Nishi, T.; Miyawaki, N.; Shii, D.; Honda, T.; Shibano, T. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1923–1926; (b) Koidl, B.; Miyawaki, N.; Tritthart, H. A. *Eur. J. Pharm.* **1997**, *322*, 243–247; (c) Takahashi, T.; Kanda, T.; Imai, S.; Suzuki, T.; Kobayashi, I.; Murata, K. *Eur. J. Pharm.* **1996**, *295*, 229–234.
- Varney, M. D.; Palmer, C. L.; Romines, W. H., III; Boritzki, T.; Margosiak, S. A.; Almassy, R.; Janson, C. A.; Barlett, C.; Howland, E. J.; Ferre, R. *J. Med. Chem.* 1997, 40, 2502–2524.
- Ishibashi, H.; Uegaki, M.; Sakai, M.; Takeda, Y. Tetrahedron 2001, 57, 2115–2120.
- Woydowski, K.; Fleischhauer, J.; Schiffer, J.; Liebscher, J. J. Chem. Soc., Perkin Trans. 1 1999, 149–153.
- (a) Michinori, K.; Tohru, Y.; Yukiko, A.; Kiyoshi, M.; Takashi, T. *Heterocycles* 1998, 48, 1523–1526; (b) Khumtaveeporn, K.; Alper, H. J. Am. Chem. Soc. 1994, 116, 5662–5666; (c) Mohacsi, E.; O'Brien, J. P.; Todaro, L. J. J. *Heterocycl. Chem.* 1990, 27, 1085–1089.
- 7. Karrer, S. Helv. Chim. Acta 1944, 27, 1275.
- (a) Cundari, S.; Dalpozzo, R.; De Nino, A.; Procopio, A.; Sindona, G.; Athanassopulos, K. *Tetrahedron* 1999, 55, 10155–10162; (b) Apostolopoulos, C. D.; Georgiadis, M. P.; Couladouros, E. A. J. *Heterocycl. Chem.* 1996, 33, 703–708; (c) Ito, S.; Ota, A.; Suhara, H.; Tabashi, K.; Kawashima, Y. *Chem. Pharm. Bull.* 1993, 41, 1066–1073; (d) Shih, H. C.; Rankin, G. O. J. *Heterocycl. Chem.* 1988, 589–590; (e) Jephcote, V. J.; Jowett, I. C.; John, D. I.; Edwards, P. D.; Luk, K.; Slawin, A. M.; Williams, D. J. J. *Chem. Soc., Perkin Trans.* 1 1986, 2187–2194.

- Eckle, E.; Stezowski, J. J. J. Med. Chem. 1985, 28, 125–137. See also: (b) Zanotti, G.; Pinnen, F.; Lucente, G.; Cerrini, S.; Gavuzzo, E. J. Chem. Soc., Perkin Trans. 1 1988, 2647–2652; (c) Sugimoto, T.; Hayashi, T.; Okita, A.; Morino, A. Arzneim. Forsch. 1996, 46, 127–133; (d) Itoh, Y.; Yamazaki, A.; Ukai, Y.; Yoshikuni, Y.; Kimura, K. Pharmacol. Toxicol. 1996, 78, 421–428.
- Nefzi, A.; Giulianotti, M.; Houghten, R. A. *Tetrahedron* Lett. **1998**, *39*, 3671–3674.
- 11. Trost, B. M. Science 1991, 254, 1471-1477.
- See for example: (a) Gedey, S.; Van der Eycken, J.; Fulop, F. Org. Lett. 2002, 4, 1967–1969; (b) Cheng, J. F.; Chen, M.; Arrhenius, T.; Nadzan, A. Tetrahedron Lett. 2002, 43, 6293–6295. For reviews, see: (c) Ugi, I. Pure Appl. Chem. 2001, 73, 187–191; (d) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. Engl. 2000, 39, 3168–3210.
- (a) Marcaccini, S.; Pepino, R.; Paoli, P.; Rossi, P.; Torroba, T. J. Chem. Res. (S) 2001, 465–467; (b) Marcaccini, S.; Pepino, R.; Pozo, M. C. Tetrahedron Lett. 2001, 42, 2727–2728; (c) Marcaccini, S.; Pepino, R.; Polo, C.; Pozo, C. Synthesis 2001, 85–88; (d) Marcaccini, S.; Pepino, R.; Marcos, C. F.; Polo, C.; Torroba, T. J. Heterocycl. Chem. 2000, 37, 1501–1503; (e) Bossio, R.; Marcaccini, S.; Pepino, R.; Torroba, T. Heterocycles 1999, 50, 463–467.
- (a) Koskimies, J. K. Acta Chem. Scand. Ser. B 1984, 38, 101–108; (b) Brink, M. Tetrahedron Lett. 1971, 12, 2753– 2756.
- 15. All new compounds gave satisfactory spectral and elemental analysis (selected examples are given). 4-Benzyl-3-methyl-5oxothiomorpholin-3-(N-cyclohexylcarboxamide) 4a: White solid, mp 130–131°C. IR (KBr, cm⁻¹) v 3327 (NH), 1636 (CO), 1624 (CO); ¹H NMR (CDCl₃, 200 MHz) δ 0.91–1.98 (m, 13H), 2.89 (d, J=14.2, 1H), 3.16 (d, J=14.2, 1H), 3.36 (d, J=16.0, 1H), 3.52 (d, J=16.0, 1H), 3.63–3.78 (m, 1H), 4.06 (d, J = 16.2, 1H), 5.12 (d, J = 16.2, 1H), 6.16 (br s, 1H),NH), 7.13-7.32 (m, 5H, H_{Ar}); ¹³C NMR (CDCl₃, 50 MHz) δ 24.8 (CH₂), 25.0 (CH₃), 25.4, 32.2, 32.6, 32.8, and 38.1 (5×CH₂), 49.0 (CH), 68.4 (Cq), 126.6, 127.1, and 128.6 (3×CH_{Ar}), 137.8 (C_{Ar}), 167.5 and 170.6 (2×CO). HRMS M_{found}^+ = 346.1690, $C_{19}H_{26}N_2O_2S$ requires 346.1715. Anal. calcd for C₁₉H₂₆N₂O₂S: C, 65.86; H, 7.56; N, 8.08. Found: C, 65.98; H, 7.67; N, 8.00%. 4-(4-Chlorobenzyl)-3-methyl-5oxothiomorpholin-3-(N-cyclohexylcarboxamide) 4b: White solid, mp 170–171°C. IR (KBr, cm⁻¹) v 1661 (CO), 1618 (CO); ¹H NMR (CDCl₃, 200 MHz) δ 0.91–1.98 (m, 13H), 2.90 (d, J = 14.2, 1H), 3.12 (d, J = 14.2, 1H), 3.36 (d, J = 16.8, J)1H), 3.50 (d, J = 16.8, 1H), 3.61 - 3.83 (m, 1H), 3.94 (d, J=16.2, 1H), 5.09 (d, J=16.2, 1H), 6.21 (d, J=8.4, 1H, NH), 7.07–7.26 (m, 4H, H_{Ar}); ¹³C NMR (CDCl₃, 50 MHz) δ 24.8 (CH₂), 25.0 (CH₃), 25.4, 32.2, 32.7, 32.8, 38.2, and 48.7 (6×CH₂), 49.1 (CH), 68.4 (Cq), 128.1 and 128.7 $(2 \times CH_{Ar})$, 132.9 and 136.3 $(2 \times C_{Ar})$, 167.4 and 170.4 (2×CO). 3-Methyl-4-(3,4-methylenedioxy)benzyl-5-oxothiomorpholin-3-(N-cyclohexylcarboxamide) 4c: White solid, mp 211-213°C (dec). IR (KBr, cm⁻¹) v 1657 (CO), 1617 (CO); ¹H NMR (CDCl₃, 200 MHz) δ 0.97–1.98 (m, 13H), 2.86 (d, J = 13.8, 1H), 3.14 (d, J = 13.8, 1H), 3.34 (d, J = 16.6, J)1H), 3.48 (d, J = 16.6, 1H), 3.61–3.82 (m, 1H), 3.99 (d, J=15.8, 1H), 5.01 (d, J=15.8, 1H), 5.90 (s, 2H), 6.14 (d, J=8.0, 1H, NH), 6.60–6.78 (m, 3H, H_{Ar}); ¹³C NMR (CDCl₃, 50 MHz) δ 24.8 (CH₂), 25.0 (CH₃), 25.4, 32.1, 32.6, 32.8, 38.0, and 48.7 (6×CH₂), 49.0 (CH), 68.3 (Cq), 101.1 (CH₂), 107.6, 108.3, and 120.1 (3×CH_{Ar}), 131.8, 146.6, and

147.9 (3×C_{Ar}), 167.5 and 170.6 (2×CO). 4-Benzyl-3-oxoperhydrobenzo[1,4]thiazin-4a-(N-cyclohexylcarboxamide) 5a: White solid, mp 171–172°C. IR (KBr, cm⁻¹) v 1662 (CO), 1639 (CO); ¹H NMR (CDCl₃, 200 MHz) δ 0.73–1.88 (m, 16H), 2.18-2.23 (m, 1H), 2.52-2.58 (m, 1H), 3.23 (dd, J = 12.2, 3.0, 1H, 3.40 (d, J = 11.4, 1H), 3.61–3.82 (m, 1H), 3.74(d, J = 11.4, 1H), 4.30(d, J = 15.6, 1H), 5.06(d, J = 15.6, 1H)1H), 7.13–7.32 (m, 5H, H_{Ar}), 7.57 (d, J = 7.0, 1H, NH); ¹³C NMR (CDCl₃, 50 MHz) δ 22.4, 24.5, 24.7, 25.4, 29.2, 32.3, 32.5, 32.7, and 36.5 (9×CH₂), 42.7 (CH), 47.1 (CH₂), 48.4 (CH), 68.5 (Cq), 126.8, 127.6, 128.5 (3×CH_{Ar}), 138.7 (C_{Ar}), 166.1 and 168.4 (2×CO). 4-(4-Chlorobenzyl)-3-oxoperhydrobenzo[1,4]thiazin-4a-(N-cyclohexylcarboxamide) 5b: White solid, mp 170–171°C. IR (KBr, cm⁻¹) v 1657 (CO), 1622 (CO); ¹H NMR (CDCl₃, 200 MHz) δ 0.80–2.13 (m, 17H), 2.50–2.56 (m, 1H), 3.16–3.42 (m, 2H), 3.61–3.77 (m, 2H), 4.21 (d, J = 16.2, 1H), 4.98 (d, J = 16.2, 1H), 7.04–7.23 $(m, 4H, H_{Ar}), 7.72 (d, J = 7.4, 1H, NH); {}^{13}C NMR (CDCl_3),$ 50 MHz) δ 22.4, 24.5, 24.7, 25.4, 28.8, 29.2, 32.5, 32.7, 36.6 (9×CH₂), 42.9 (CH), 47.6 (CH₂), 48.4 (CH), 68.5 (Cq), 126.8, 127.6, 128.5 (3×CH_{Ar}), 138.7 (C_{Ar}), 166.1 and 168.4 (CO). 4-(3,4-Methylenedioxy)benzyl-3-oxoperhydrobenzo-[1,4]thiazin-4a-(N-cyclohexylcarboxamide) 5c: White solid, mp 176–177°C. IR (KBr, cm⁻¹) v 1662 (CO), 1642 (CO); ¹H NMR (CDCl₃, 200 MHz) δ 0.75–2.22 (m, 17H), 2.53-2.59 (m, 1H), 3.20 (dd, J=14.6, J=3.0, 1H), 3.39 (d, J = 16.8, 1H, 3.61–3.82 (m, 1H), 3.72 (d, J = 16.8, 1H), 4.22 (d, J=15.8, 1H), 4.93 (d, J=15.8, 1H), 5.88 (s, 2H), $6.60-6.93 (m, 3H, H_{Ar}), 7.51 (d, J = 7.6, 1H, NH); {}^{13}C NMR$ (CDCl₃, 50 MHz) δ 22.4, 24.5, 24.7, 25.5, 29.2, 32.3, 32.6, 32.7, 36.5 (9×CH₂), 42.6 (CH), 46.8 (CH₂), 48.4 (CH), 68.5 (Cq), 100.9 (CH₂), 107.7, 108.1, 120.2 (3×CH_{Ar}), 132.7, 146.4, and 147.7 (3×CAr), 166.2 and 168.4 (2×CO). HRMS, M^+ = 430.1912 $C_{23}H_{30}N_2O_4S$ requires 430.1926. Anal. calcd for C₂₃H₃₀N₂O₄S: C, 64.16; H, 7.02; N, 6.51. Found: C, 64.18; H, 7.15; N, 6.39%. HRMS, $M_{found}^+ = 430.1912$ $C_{23}H_{30}N_2O_4S$ requires 430.1926. (aS,4aR,8aS)-4-(α -Methylbenzyl) - 3 - oxoperhydrobenzo[1,4]thiazin - 4a - (Ncyclohexylcarboxamide) 5d: White solid, mp 187-189°C. $[\alpha]_{\rm D} = +22.5$ (c 10.2 g/100 mL, CHCl₃); IR (KBr, cm⁻¹) v 3256 (NH), 1667 (CO), 1631 (CO); ¹H NMR (CDCl₃, 200 MHz) δ 1.07–1.93 (m, 20H), 2.67–2.74 (m, 1H), 3.21 (dd, J = 12.0, J = 2.4, 1H), 3.31 (d, J = 16.8, 1H), 3.68 (d, J = 16.1H), 3.84-3.91 (m, 1H), 4.77 (q, J=7.0, 1H), 7.10-7.28 (m, 5H, H_{Ar}), 8.23 (d, J = 7.8, 1H, NH); ¹³C NMR (CDCl₃, 50 MHz) δ 19.7 (CH₃), 22.8, 24.5, 25.6, 25.8, 29.4, 32.6, 32.9, 34.0, 36.3 (9×CH₂), 48.4, 49.1, and 55.8 (3×CH), 68.6 (Cq), 126.0, 126.1, 128.0 (3×CH $_{\rm Ar}$), 142.3 (C $_{\rm Ar}$), 164.5 and 168.1 $(2 \times CO)$. HRMS, M⁺=400.2179 C₂₃H₃₂N₂O₂S requires 400.2184. Crystal data for 5d: $C_{23}H_{32}N_2O_2S$, $M_r = 400.57$, space group $P2_12_12_1$, a=9.212(2), b=14.546(4), c=16.238(4) Å, V = 2175.8(9) Å³, Z = 4, $D_x = 1.226$ Mg m⁻³, MoK α radiation (graphite crystal monochromator, $\lambda =$ 0.71073), $\mu = 0.169 \text{ mm}^{-1}$, F(000) = 864, T = 299(2). Absolute structure parameter = 0.00. Final conventional R = 0.0445 (for 1577 $F_o > 4$ sigma (F_o)), and $wR_2 = 0.0532$ (for all 3145 reflections), and $w = 1/[s^2(F_0^2) + (0.0082P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$. Total number of parameters 257. CCDC 192749 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).